Bager and Lazy Enumerations in Concurrent Prolog

Hidelki Hirzkawe, Takashi Chikayama, Keichi Furukawsa

ICOT Research Center

Institute for New Generation Computer Technology,
Mita Hokusai Bldg. 21F, 4 - 28 Mita 1-chome,
Minsto-ku, Tokyo 108

Abstract

Leogice prograémming languages have dnherent possibility for
END-parallel and OR-parallel executions. Concurrent Prolog
designed by F.3hapire introduces an AND-parallelism and an
limited OR-parallelism, Li.e, a don'i-cere-nondeterminism, The
octher gspect of OF-parallel execution, i.e,
don't-know-nondeterminism iz formalized 2s an 'eager enumerate’
operztioen on & =et exprossion. This paper describes g
computationzl model which provides the cager enumerate function
to Concurrent Prolog and shows its implementation in . Concurrent
Frolog itselrl. This paper also shows a lazy. enumerate functicn
can be implemented “eas=ily by introducing = bounded - buffep
communication technique to the eager enumerator. . . -

1. Intreduction

L growing area of resezrech im highly parallel processing
covers computer architectures, programming langueges and
computational modelz. One of the best candidates for high level
machine langusge f[or kighly parallel processors is a2 logie
progranming language whieh represents AND and OF relations
between. predicstes, Logie programming languages have inherent
possibility of parazllel processing, that is, AND-parallel and
Ok-parallel execubtion.

Based on ihis idez, seversl parsllel progremming languepes
are proposed: such as KL1 [Fur E4], Concurrent Prolog [Sha 83],
PARLOG [Cla €3] and Bagel machine language[Sha BY]. Researches
in parallel programming are being conducted using these
langusges. In these lunguages, AND-parzllelism is used for the
deseription of parallel processes, whick is bzsed on the process
interpreiation of logic [Emd B2]. OR-parallelism has two aspeots
50 celled don't-care-nondeterminism and don't-know-nendeterpiniso
LEow T4}, The don't-care-nondeterwinism is adopted in all the
languages mentioned ahbove. However, the
don't-know-nondeterminism is dintroduced only in FARLOG =pd KLY
where It is used to find multiple selutions for a gquery. PARLOG
and FKL1 use =2 ‘"set cxpression”™ as the interface betweean

TH—035

Page 2

Alll-parallelism and OR-parallelism {don't-know-nondeterminism).

In this paper we regard the OR-parallelism to find 211
solutions 28 ‘'enumerating' elements of a set in the Same way as
in KL1. This paper describes the 'enumeration' in Concurrent
Prolog, that means the implementation of OR-parallel execution in
AND=parallel cne. An advantage of this appreoach i=s tLhat beth
AND-parallel and OR-parallel executien czn be achieved within =z
small basic frameweork of Concurrent Frolog. This implies the
decreasements of the complexity of the architecture and of the
zmount of reguired hardware of the parallel machine.

Various models for parallel processing of logic programs apre
proposed from the computetional nmedel view peints. Nitta and
Conery described parallel interpretation methods bazed an AND/OR
process model [Kit 831, ([Con 63]. Haridi proposed a language
bzsed on natural deduction, whish ecovers & wider oclass af
statements then Horn Logie [Har £3]. Hirakawa proposed &
computationzl model based on multi- rocessing and greph reduction
mechanism [Hir #&37. In this paper, a cemputationzl model for
Pure Proloeg ia introduced. This model is baz=ed on
multi-processing and message communication between processes. In
this medel, goals are computed serially from left. to right, and
clauses are computed in parallel, - . '

Dased on this' model, we. have implemented = Pure Prolog
interpreter In DEC-20 Conecurrent Prolog [Sha 83] to rezlize the
"enumerate' functicon menticned above. This dinterpreter works
eagerly to get all solutions for a given goel. By replacing the
stream communication portion used in the interpreter wilh bounded
buffer communication dimplenentation and by adding some =mall
changes, = lazy interpreter which works in accordance with
demands czn be obtazined easily.

Section 2 af this paper explains Lhe concept of
Tenumerztion', Section 3 describes the computational model end
its implementation in Coneourrent Frolog., DSection 4 describes the
nodification of the interpreter frem eager version to the lazy
one.

2. Enumerations
in interface between AND-parallelism and OF-paralleliss (a
don't know determinism) is introduced using set expressions in

FARELOG and KL1. A set expression has the syntax such as:

{xiy}
where X is a term and ¥ iz a goal sequence

Fage 3

In KL1, the basic cperation on 2 set is an 'enumerate!
operation. In this paper the same expression is introcduced in
Concurrent Proleg as in EKL1. '"Envmerate' is similar to the
"bagof' cperation in DEC-10 Prolog [War 21].

Frolog Concurrent Prolog
begef (i, Collection) enumerate({X|Y]),Strean)

The meaning of 'bagof' literal above is "Collection is the
collection of terms of the ferm ¥, which satisfy the goal
Eequence YN, In Concurrent Prolog, 'Stream' in ‘enemerzte!
clause is the same a5 'Collection' in 'bagpof! logiecally, but it
15 2 siream of terms rather then a simple collection, This is a
natural interface to zn AND-parallel process,

There are two types of sirezmos. One is an "uncontrelled
2tream' and the cther is a 'controlled stream!. "Fnocontrolled!®
means that onee 'cnumerate' iz called, its cutput stream is never
stopped until all the seluticns are gencrated, On the other
hand, 'controlled' means thal Lhe generation of the solutions is

irnveked by =« demand of a process oulside of 'enumerate', The
lormer type of enumcration iz called "eapor enumeration' and the
latter 'lazy enumeration'. The eager enumerztion is used for

finding 21l solutions to-z database guery and generzlly _reguires
many computation - resources, while lazy coumeration is used for.
Fionding a part of solutions which satisfy some requirements © of
ether processes, The fellowing are the simple exaumples of lazy
and eager enumcrations.

Eager enumeration

"display zall the country with more than one hundred million
population”

Ceal: eagen_enumcratef{Manlcauntny{Mam.ﬂapl,Papj,Pap}!ﬂD],Str},
dizplay_stream{Str7).

Lzzy enuwmeration

"dizplay three countrics with more than one hundred millien
populetion®

Gosl: lazy_enumerate({Nan|country(Nam,Cap,Pop),Pop>100},8tr7),
display({Str,3}.

in the above examples, ‘enumerate' and 'display' run in
parallel {concurrently). In the former example,
"eager _emumerate' produgces a2 stream of country nEmes and
'dizplay_strean' displays them in turn. In the latter exanple,
‘dicplay! sends three demands for solutions to 'lazy enumerste!
and "lazy_enumerate! produces them, The detzils will be
dezcribed later.

Fare &

3. Fager Enumeration

The eager enumerstion is preovided by a Frolesg interpreter
which computes subgoals serially and clauses in parallel, In
this section, a computationzl model for an eager interpreter znd
its implementation in Conecurrent Prolog are described.

3.1 Computational Model

1.1.] Components

The computationzl model fer the eager interpreter consists of
threo componentss processes, channels and a lorn Clouse
Database(HDE).

L process plays a key role in 2 computetion. &n arbitrary

number of processes oan be generzted in a syslem. A procesas
corresponds to & clause being computed, such as H{--G1,C2. There
arc two types of processes, that i=, aclive anpd waiting. The
waiting process waits until it receives data from another
process.

4 channel is a communicetion path between processes and is
dynamieally generated during. the computation, Data transferred
through 2 channel is czlied a message. .. A message is pazased from
a process -ecalled = "generator" tc processes named "consumeps',
Tho distinetion between a generater and a consumer is rolative,
and 2 wsingle process gan simultanecusly play both roles., One
E€neérator process can sipuliansously send a message Lo multiple
Lonsumer processes vizg a2 ghannel, Similarly, cne consumer
process can be connected to multiple generztors.

The Horn Datobase (HDB) is a set of Fure Froleg elauses, A
process ecan fetah the set of clauses which have the heads
unifiable with a gertain ters, & fetching aperation zbout tepm T
iz galled "Porelated fetoh'.

2.1.2 Frocess_ Operation

In the computational model given here, computztion Frogress
while multiple processes aro exchanging messages, This
subzection provides z mere detziled desceription of the process,
shows 2 simple example, and presents the sxecution mechanisg of
Lthe computational model,

k process is dcfined by five components: Status, Head,
Goals, Input-Channel, and Output-Channel, as shown in Lhe
following format:

process(Status, Head, Cealz, Input-Channel, Cutpul-Channel)

Page 5

"Status' indiczbtes the state of & process znd is either
tactive! ar 'waiting'. An aective process can Carry on
computation by itself, while & waiting oprocess can perform no
processing until it receives 2 message. 'Hezd' iz = predicate
{term) and represents what the process must eventuszlly compute.
"Gozgls' is either null, '"true' or a sequence of predicates apd
indicates the predicztes To be computed to compute the Head., For
example, if the HDE includes ‘'a<--b,c¢', there may be the
following process:

process{Status, a, {(b,e), Input-Chanpel, Cutput-Channel)

In addition, if the predicazte b has been computed, there may be =2
praocess a5 follows:

process{Siatus, a, (o), Input-Channel, Qutput-Channel}

"Channel' i= used tc transfer messages anong processes as
desceribed above. A process sappears 2= a consumer for its
Input-Channrel, while it fupncticns a2 & generztor for ice
output-Channel,

Here, we will define the operation of a process.
(i) Aetive process

The cpeprzticn pode of an active proecess iz either reduction
or terminpation. In reduction mode, the rightmoat subgoal of a
clause is expanded using infersnce--rules in HDE; the active
process is maintazined after the reduction is completed. By
contrast, toemination means thest inference resches "true' or the
applieztiean of =2n inference rule falls; in both cases, the
process is immediztely deleted.

Operation in reduchion node

Lzsume process{active, B, G, I, 0. IFf § is neither null nor
'truc' and G is in the form of either P or (P,...) where P is 2
predicate defined 4in the KEDE, then the process perforos =
F-rclated feteh to the HDE to obtaln & clause =zet, 2, generates
aetive procersses for z2l]1 the cooponents of 5, and connects each
process with itsell through Channel I (ezch process functions as
& producsr}. IL also chenges its status to 'waiting'.

Operetion in termpipation mode

There sre two Lypes of terminations: sucscess o failure, it
suceess terminaticn occurs when reduction reaches frue, while a
failure termination cceurs when 2 feteh operation Fails, The
failure termination corrésponds to Prolog's 'fail'.

Page 6

siecess terpinstion
Wnen G is either mall or true, the process sends Y via channel
O znd deletes itselfl.

Faslure termination

The process deletes itself.
(B) Weiting process

laving received = message (term} M via channel I, a waiting
process pgenerates G', a copy of its Gozls G, in the format P! or
{(P', P1,...), and unifies the head element P' with M (Trzpsfer of
the computation results.) Then, it establishes NewG, which is G
with its head element removed. However, when G' contains only
F'y HNewG will be true. Then, the walting process generztes the
following eetive process:

process{active, H, Newl, I', Q)
Where I' is 2 new channel,

The waiting process will be maintzined in the original form.

The entire cemputztien terminates, when all the processes
are deleted.

2,1.3_Sinple Computation Fxsmple

This subsection presentz z simple exemple Lo show the way the
computztionzl mwodel is execoted., In the follewing figures, the
active process p, the waiting process g and the echannel o spe
dencted by (...)p, [...]q and =-~c==>, respectively. (p, g and o
wmay be omitte .) The Head H and Coals € are shown as He==(,

Assume that the HDE is given az follows:
HDE = {ap({1,X,X). ap([UiX],Y,[UI2))<map(X,¥,2).}

To eonpute [X,Y¥] that satisfies 2 poal epl¥,¥,[2]}, the
following process is generated as the initizl process:

=== {[}:.!]{-—EP[K,YT[E]}JDG

A messapge output through o0 iz the sclutlon. Sinee pl is =zn
active proceszs, it performs & fetch operation and genarztes new
processes, pl oand p?, and then chanpges the status from active to
waiting.

Page 7

Cemelem [[X,¥]<-ap(X,Y,[2]}]p0 <ms=(ap([],[2],[2))<—=true)pl
+—{ap({laix],¥,[2])
e—aplX, ¥, [1))p2

There are twoe active processes, Each process ruEns
simultanecusly. &3 p1 hzs a terminested clause, it s=ends the head
of the clause &and deletes itself; P receives mpessage

'ep([1,[21,[2))" and creates & new process p3; p? performs a
reduction mode operatien and produces & new process pl,

fe—ole— [{X,Y]<e=ap(X, Y, [al}]pl <-4
I

+= [[[1,[a81]<~~truelp3 +=[ap{lalyl,¥, [c])
<--ap{xl Yf[] j}pz

(ap([1,[1,[])<-=true)pli-~+
An active proccss pd sends the message "ap(l),[1,[1)' e p2
znd deletes itzelf. Receiving the meusage, p? creates 2 new
provess pS and deletes itselfl because it has no cohild process:
p3 sends '[[1,[z2]]' (the Cfirst solution) to el and deletes
it=elf.
Cmmm[[X ¥ <==api{X,¥,[2])]p0 <===(apilal,[].,[a]}<--truelps

PS5 sends the mpesssge 'apl(l[z],[].[a1)}' to p0 end deletes
itzsell, p0 produces pd and deletes itself. -

¢=-c0--([[al,[11<--true)p§

P6 sends wessage '{[al,[1]' (the second sclution) toc o0 and ,

r
finally, deletesz iteelf.
3.2 Eager Interpreter Implementation

2,2.1 Cernpuprert Prolos

Concurrent Proleg adopts 4MD-parallelism ta describe
aoncurrent processes and O-parallelism to describe
nendeteppiniatic sctions of processes
(don't-care-nondeterminisec). Dace a elause is selected, the
ehoice of other clauses is ignored. Concurrent Prolog uses
variables shared by proccEscs running concurrently for
interprocess copmunications. {For further details, refer to [Sha
LERD

This subsection gives a simple program exanple to provide the
necessary informatlon lfor later discussion. The progreo outputs,
if person 'X' is o man, his desughter's pame, znd, if 'X" is a
woman, her san's.

Page B

(2) opposite_sex_child(X):~ man(X) | daughter{X,¥),output(X,¥?).
(bt) opposite_sex_child(X):- woman{X) ! sonl{X,Y),output{X, ¥?),

The symbol '{' is ealled a guzrd bar znd separates 2 puard
sequence from a goal sequence. The gusrd bar hes the mezning
zimilar te Prolog's 'cut', and ecuts other alternative clauses,
the comma ',' in Concurrent Prelog has the different meaning [rom
that in Prolog and denotes parallel-AND relationship, it is =
logieal equivalent for the ordinary AND. Concurrent Prolog uses
g symbol '%&' to express =serial-AND relation. '?" meapns "g
variable atiached with %' should net he inztantiated to =
non-variable term". 7' is ezlled 'read-only annotation', and a
f-attached wvariable is referred to o= 2 'read-only varisble'.
The read-only annoctation permits " shared-variahle-bezsed
communications betwesn conourrent processes {interproccas
cemaunication). Also, in Concurrent Prolog, a process with =
rezd-only variable waits until anether process instantiates o
value to the variazble {proosss synehronizationt,

3.2.2 Zgger Intercreler in Copcurrent Frolog

With the computational "model implemented in Concurrent
Prolog, a process is expressed by the following term:

pr@ﬂessfﬁtatus.Gutpunchannel,InputChannel,Clauae]

4 generation of a process iz performed by paraiiel A!ND's sueh
45 'process i~ processi,process2', and z deletion of £ process is

cxpressed Ly Lermination of the process, 'progessi-true’, A
channel iz implemented by shared varizbles and process
synchrenization is zchieved with read-only annetatiern. Although

not shown in this paper, oor zyeilen construcks the HORB using &
peta representation, 'an(llorn eclanse)', in the internci database
of Concurrent Preleg., Fig.l shows the program of the eager
interpreler,

{(p1) to (p3) define the behavior of zctive processes, while
{ph) and (pS) defines thet of a waiting process,

{pi) performs recuction. The predicate ‘'reduce' checks
whether or not the first element of the subpgoals in 'Cls' 4s
defined in the HDBE. VWhen the first element is not found in HDE,
the predicate ‘'reduce' rfails, When the guard portion of (p1)
Succeeds, two predicotes in the gozl portion, ‘'process' and
'process_fork', are executed in parallel. 'process' is the
criginzl procesz in waiting mode, and *'2' is sttachesd to the
variable 'Irnch'. 'process_fork' generates 2 new asctive proceze
for cach of newly fetehed clavses, 'merge' predicate is uzed Cop
construeting & channel betweeon = parent process and its child
processes. Hote that this merger deleles itself, when one input
channel iz closed.

Page ©

(p2) ecorrespends bte 2 process in 2 terminatien mede. The
predicate 'terminate' cheekta that 'Cla' is in the formet "Yd{--
true', The second argument '[Mess]' specifies that the message
iz sment to *OutCh' and the active process is terminated. Then,
the proceass deletes iltselifl.

{p3} shows the operaticon of active processes in which further
reduction has become imposzsible. (p3) deletes itself closzing the
outpul channel.

In {pi}, the Input-Channel is 2 read-cnly variable; when =z
value is instantiated to the variable (i.e, when = message is
received), the process starts aperating., The prodicate
'newclapse' generatez a3 copy "Hew(! from original elause 'Cls!?
according teo the waiting proceszs operation definition mentioned
in 3.1.2. The geel portion of the progran specifies & now
process generation with the new clausze znd the original process
to be remained as it was. The ocutput cheannels of these two
process {'OutChi' and '"OulCh2'} are merpged into theo original
ocutput chaonel "Cutlh',

{pS) is fer = weiting process with closed message streanm,
which means that 21l the child processes have completed their
Jjobs. The waiting process deletes tself elesing it output
charnel., .

Uging this "inferpreter, the eager enumeration Can be
conotructed &z lollowsa:

eager_cnumerate({X|Y},50r) -
process{active, Btr, {X<=mY)).

is described sbove, computationzl model e¢zn be written _din
Coneurrent -, Prolog very eszily, beczuse of itz hipgh descriptive
capahility. This &ls0 shows that OR=-paralleli=m ean be
implemented by AND-parallelisn.

3.3 The Relined Version of The Ezger Interpreter

The eager interpreter described above is the diprecl
implementation of the computational model in section 3.1. This
implementation wutilirzes & 'merge! network for messapge
copmuniecation. The "merge’ predicate merges two slrezsnos

nondeterplipisticelly to provide @ cheracteristic of a channel
where every c¢hild process con sSend & message te its parent
independent of obther child processes. However, the mperge petwork
nas two drawbacks: 1t consvmes & certzin amount of the resourccs

zince & '"merge' is also & Coneurrcni Proleg process, and the
messzge transfer takes relztively much tlme because the npessafs
iz =ert wvia moere thar one meérgers, By eliminnting the

nondeterminacy of the meszage '-‘.I!"al'l-EfET', we ¢&n construct = more
efficient eager interpreter without Lhe merge network.

Page 10

The besic idea of the new wversion is to use D-list and
lineariz the channel. In this version, an input channel of a
parent process is the concatenation of the output channels of its
child processes. Te achieve this fezture, & reduction of =an
aclive process is changed as follows:

processizetive,0Cs,00e, (nd--2}) :-
process{wait,0Cs,0Ce,IC1? ,1C,(m¢—a)}),
process(zetive, IC01,IC2, (ad=-=b1)},
process{active,IC2,IC3,(a¢--b2]}),

processi{ective, ICn, IC, (a<—bn)).

The first goal of the gzbove clause spacifies the parent
progess and the rest specifies itz child processes. Each acbive
process hez bolh the output channel of its own (second argument)
and its successor's cutput channel (third zrgument). After this
clause is selected, each child process computes its sclutions to
aitach them to itz output channel.

parent_process

I

]

ehild_prol child_pro2 child pro3 ... child_pron |

P ! Yo \ ! AW
[2alt1,801121%1 [=o0l211¥] IC3 ' - Ic

The zbove figure shows the situstion that the -ehild processi
produced twe solutions,. child_process? produced one and the
'parent_process' has received one seolution 'soll1'. When a child
process puts all the solutions dinteo its output channel, it
corncatonates its owtput channel and its successor's one. The
parent process regelves messages and executes its operztion until
the head pointer reaches the tail peinter of its input channel.
When it terminates, a parent process concatenstes its output
channel and thai of ils successor because the parcnt process’ iz a
child process of the grand parent proocess, Thi= method
guaraniees the ordering of =oiutions &5 well as OR-parellel
executicn.

The details of the interpreter iz shown in [Hir B3], The
speed of Lhizs interpreter iz zbout two times fester than the
originzl one.

4, Lazy Erumeraticn
Thi= secLion introduces the lazy interpreier, which is

modification of the interpreter desoribed in seciion 3. This
interpreter provides the lazy enumerate function.

Page 11

The lazy interpreter produces & sclution for 2 given goal
sequence according to the demand from one of the other Concurrent
Prolog processes. Then the interpreter suspends the computation
until it receives 2 next demand. When the interpreter receives z
werill" message, it should release the resovrcezs 2nd terpinate
itselfl. To Zioplement the demand driven mechanism; the way of
demand transfer and the execution suspensiocn control should be
established. These zre achieved by bounded buffer communication
methed in Cencurrent Prolog [Tak B3].

4.1 Bounded Buffer Communication

The interprocess communication is provided by the shared
variables in Concurrent Prolog. Sending a4 mezsage i=s
lnstantiating & shered variable to the meszege. Eince one
instantiation ecorresponds to one messape bransfer, & new shared
variable must be generated to continue the communication.
According to Takeuchi, unbounded and bounded huffer
comrunications can be supperted in Concurrent Prolog.

The hounded buffer communicetion is achieved when the message
receiver generztes new shared warizbles, The fellowing is &
sipple exsmple of the bounded buffer communication with buffer
length 2. .

Goal :: integers(0,[X,YiN7]), outstream{ [X,Y|NI\N)

integers{X, [XIM]) = ¥ := ¥s1 | intemer=(Y,H).
putstreem({[XiMIN[PIO?]) = wait{¥)&write{X) | ocutstream{M\3).

'Integera' penerates sn integer stream. 'Outstream' outputs
the elements: of the strezm. & symbel "\' is= an infix operatop
which is wsed Lo write 2 head and 3 tail of D-list in one term.
The ogll of 'integers' contzins variables "X, Y which zpecify a
purfer lemgth of two, Process "intepers' can instantiate 'X' and
Yo te 0 and 1 respectively, but cannot bind 2 to the variable

"N' because of its read only annotation. Thiz ©process waits
urtil the wvariabl: 'H' is bound. On the other hand, process
Toulstrean' wails until the "integers' process binds the wvalue
because of the prediccte 'wait(Xi'. When the variable iz bound

te 0, "Tocutstrezm' writes the value and enters the pecursive pzll.,
At this mement, 2 new varisble 'P' is attached to the end aof the
conpunicetion chennel because the tail of the channel (variable)
is bound te '"[FiIZT]' in the head of "outstream' definition., This
instantiation enables the ‘'integers' process 1o continue the
processing.

The bounded buffer technigue enzbles the receiver process to
control the sender process. Attcching an uninstantizted variable
to the tail of Lhe communicatiozn channel eorresponds to the
demand transfer from a receiver process Lo & scnder process.
Lazy enumeprztor communicates with other Concurrent Prelog

Page 12

processes via & bounded buffer zs follows:
Goal :: lazy_enumerate({X{Y],[UIV?]), receiver([U!VI\V)

A '"kill" pmeszage to an enumerator is to close the
conpunication channel by binding '[]' to the tail of a channel.

4.2 Lazy Interpreter Implementation

Lazy Pure Prolog interpreter is obtained by changing the
characteristics of the eager one 25 follows:

{1} Replacing each communication channel from an unbounded
buff'er te &2 bounded buffer,

{2) Using a linearized channel instead of & merge network.

[3) Berializing precess creations,

(4} Adding process operations for & kill demand.

Fig.2 shows thke program of the lazy interpreter,

(p1) te (pi) cefine the behavier of active process. The
scecond argument of an zetive process is its output ‘ehannel and
_ the third argument is its succezsor's cutput channel whieh i .
needed . for linearizing. & chznnel as mertioned in-3.3. Yhen an..
active process is generzted, its output chznnel is bound. te
"TBIK?]T or L]0,

{p1) 1z 2 definition for. wanipulation a kiil demand, - which .
specify 2 termination of an” active process, (p2) to (ph4)
correspond te the definitiens in the eager interpreter, p2)
specifies the operation in the preduse mode where new ehild
processes are generated and the active process echanges itz status
Lo 'waiting'! binding '[BI{R?]' te its inpul chennel. This binding
iz a demand faor its child process. The Tfoellowing figure szhows a
demand transfer from a parent process to itz child process.

(xl¥?)
{=—=—=——={ active_procecss) ===3
[xi¥?]
F (A —— [waiting process]
i [BiN?]
Fmmmmeeeeeee——{ ghild processz |

Predicate 'proeess_fork' execules 'eglauses' and eall fforks'
which is teo generate child processes. This process generation is
ccntrolled by bounded buffer mechanism (the sevond arpument of

"forks'). The second generation of child process is postponed
until a next demand is detected. (1) specifiez the bekavier of
'forks' when & demand 1= kill ane. The szerial-AND in (£3)

specifies that a recurszive "ferks' call should be tried after cone
process terminztes. This La= for only the effieient

Page 13

implementation in DEC-20 Conecurrent Proleg which doe=zpn't have
non=busy-wait mochanism.

(p3) and ({pd} define that an active process terminates
coneatenating its output channel and its =zuccessor's {a
unificetion of the second argument and the third one).

{p5) te (p7) defines the operation of waiting processes,
(ph) which specify a process termination iz for a kill demand.
When the message sent via its input channel is 'Send%’, & waiting
process concatenates its output channel and its zuccessor's and
terminates itsell. Message ‘'"Send$y' means that all child
processes of a waiting proecess are terminated., (p7) apecifies 2
waiting process operstion when it received a =solution. The
configuration of an output chennel of & waiting process and that
of & new active process is as follows:

Lo [waiting process)
' [=clution!N?]

tmmmmee e ghild processes

[XiY%l OFe
fm=m=—={ new process] f{mmm=| waiting process |
| n2
Fommmmm———— oiild
processes

Output cnanpel 'OPe' will "be stteched te the £2il of the
output echaznnel of T'new process' when it terminates. Predicate
'tranzfer_demand' in (pT) transfers a demand, for example, the
vaiting process in the zbove [igure instantiates THN' o
v n?} or '[]' according to 2 demand it receives,

Uzing the lazy interpreter, 'lazy_cenumerste’ is defined o=
Toellows:

lazy_envmerate{ {X!0Goals],0Ps) -
process{active,0Fs , 0P, (X<--Coals)) & sendend({OPe?).

sendend([end_of_solution!_]).
sendend([1),

*Sendend’ sends messape "end_of solution' when a demand
number exgeeds the total element number of a set. The interface
between '"lazy enumereaic’ and other Concurrent Prolop process is a
bounded puffer.

G. Discuscion

Fage 14

To realize don't-know-nendeterminism, an environment of
variable bindings must be maintained for multiple solutions. The
interpreter described in this paper retzins the environment oy
copying =& clause, that is, & waiting processes copies its clause
when it receives a mnesszge. A simple copying method has =
drawbacks on both space and time efficiencies,

The space problem is that a simple methed produces a whole
eopy of a given term which contazins non-variable pertiens whish
can be shared. This problem is avoided by intreducing 'rename!
predicete which produces & copy of 2 term sharing ground term
portions with itz opiginal term.

The time problem is that & copy operation should sezroeh whole
part of 2 given term. This will incresse a eomputation time of a
waiting process accerding te the size of the terms it contains.
One of the possible optimization metkeds for this proeblen is to
determine the portion te be shared in ecompile time (either
aulomatieally or by giving declarations). & development of an
efficient renaming method is cne of the important Lopies for &an
implementation of the don't-know-nondeterminism,

b. Coneclusion

This paper described an OR-parsllel execution model for Pure
Prolog and an implezcntation of erumerate function in Coneurrent
Frolog bzsed on the nodel,

The computationzl model is based on multi-processing and
interprocess communicaticns. . The model provides an ceger Pupc
Frolog interpreler implemented in Concerrent Prolog. 4lso a lazy
interpreter cizn be obtained easily by introducing & bounded
buffer communication mechanism to the ezger Lnlerpreter. . The
ézger irierpreter znd the lazy interpreter provides eager and
lazy enuuerate functiens to Concurrent Preleg, which zre very
important funetions for & parallel legic programming.

Thiz zpproach shows that both 0OB-parallel and ENl-pzrallel
execution of & logic program is achieved only by AND-parzllel
cxecution. This feature is very important beccuse it decrezzas
the complexity of the compuler architecture cngd Lhe amount of
required herdware of 2 highly parsllel pachine,

Acknowledgencnt

Ve would like to thank HMp. Takeuecki for hisz wvaluable
suggestions ol the uze of Conourrent TProlog =nd on the
computationzl model, M, Zakei and Mr, Fondou and other

resesrchers a2t the Second Hesesreh Laboratory who have joined
discuscions. We would zlso like to thank Dr. FE.Shapiro and Dr.

Page 15

E.Fahn for their useful advices about an OH-perallel executicn of
logic programs.

[Cla

[Con

[Emd

[Fur

[Bar

[Hir

[Hir

[rit

83]

83]

8]

B1]

83]

Bu]

Hefepences

Clark,k.L and Gregory,3:"PARLOG: A Parallel Logic
Frogramning Languege", Imperial College Rescarch Report,
{tiay 1983).

Conery,Jd,8: "The AND/OR Process Model for Parallel
Interpretztion of Legic Programs", Techniczl Report 204,
University of Czlifornia Irvine, (1983).

Emden,M.H., =&nd de Lucena Filho,G.J.: "Predicate

Logie as o Languame for Parallel Programming™, in "LOGIC
FPROGREMING", Clark,B.L. and Ternlund,S.A. eds.,
ficademic Press, (1982).

Furukawz,K. =and the Kernel Language Design Group:
"Conceptuzl Specification of the Fifth Ceneration Kernel
Lenguzge Version 1 (KEL1}", to appear a2s an ICOT
Technieal Report, {1GEL).

Heridi,%. and Sahlin,D,: "Evalusztion of Logic Programs
based on ¥atural PReductiaon’, The Royal Institute of
Technalagy, TRITA-CS-B30%5, (19853).

Hirskawa,4.; Onui,H. and Purukaws,K.:; "implementing
an Ok- Porellel Optimizing Proleg System (POPS) in
Concurrent Preleg", ICOT Technieal Report, TR-020,
(1983},

Hirakzwa,H., Chikayama,T. and Furukawa,l.:
IEremerations in Concurrent Prolop - Computaiionsl
Model and itz Implementation™, te be zppear in ICOT
Technical Repart, (1984).

Kowalski,H.: "Logic Tor Problem Solving™, Nerth
Holland, Wew York {(1979).

Nitta,E., Hetsumoto,Y. and Furukaws,K. :"Frolog
Interpreler Based on Concurrent Programming®, Proe. of
12t International Logic Programming Conference,
pp.30=42, (1982).

Shapire,f.Y.: "4 Subset of Concurrent Prolop amd Itz
Interpreter®, ICOT Technicel Keport TE-D03, {1983).

Shepire,E.Y.: "The Bagel: A Systolie Concurrent
Prolog Machine", Lo appesar az an ICOT Techniczl Report,
(1984},

Page 16

[Tak 83] Takeuchi,i and Furukawa,k: "Interprocess Communication
in Concurrent Proleg", Proc. of Logic Progremming
Workshop, {1983).

{War 81] Warren,D.H.: "Higher-Order Extensions to Frolog: Are
They Heeded?", D.A.I. Research Paper No. 154, (1981},

Page 17

{p1) process{active,OutlCh,Cla) -
reduce(Cls, NextGoal) |
process{wait,OutCh, InCh? ,Cls) ,
process fork(InCh, HextCozl).

{p2) process(active,[Mess],Cls) :-
terminate{Cls, Hess) | true,

(p3) process{active,[],Cl=).

(pd} process{weit,OutCh,!Terminated_Gosl!C1],Cls) :-
nevclavse(Cls, Terninated_Gozl, Newl) |

process{wait,CutlCh1,017 ,Ci=) ,

nerge(QutChl?, CutCh2?,0utChl,

process(active, CutChe , NewC).
{p:) process{wait,[1,[],C1=).

process_fork(0utCh,Goal) -
clausesz{Goal,ClsList) |
forks{Clslist,QutCh).

forks{[1:{1)

ferks({Clause |Rest],0utlh) :-
processiactive, DutChi,_,Clausel,
nerge{0UtCR1 7, 0utCh27, 0uilhl,
forks({fest,Cutlh?).

merpe([21X1,Y,0802Y) = meorpelX?,Y,2).
merge(X,[S1Y1,[512]) :- marze(¥,¥?7,2).
merge([1,¥,¥).
merpe{X,[],¥).

Fig.1 Eagcr Ienlerpreler for Fure Proleg

Fage 18

{(p1) processf{active,[],[]1,Cls).

{p2) process{astive,OPs,0Fe,Cls) --
reduce(Cls, NextGoal) |
procesz{wait,0Ps,0Pe,[BININN,C18) ,

process_lork{NextGoal ,[BIN%T]).

{p2) process{active,[Mes=!R],R,C1ls) :-
terminate{Cls,Mess) | trus.

{p4) process{active,0Ps,0Ps,01s).
(p2) process(wait,[],[],[1_,_).

(p8) process(wait,OFs,0Ps,[Terminasted_Goal!]\ _,Cls) :=
wailt{Terninated_Goal) &

Terminzted_Goal="%ends' | true.

(ph) process(woit, 0Pz, 0Pel,[Terminated_Gosl!C1]\ER,Cls) :-
wait(Terninated Goal) &
newclause(Cls, Terninated_Gozl,YewC) !
processl(active,0Ps, OPe, liewl) &.
transier_demand(CPe?,R,0) &-
process(wait, (0Pe?),0Pe1,C143,01s).

process_forik{lozl,0Pz) 1= - :
clavses(Goal,Clslist) !
- forks(Clslist,0Ps).

(F1) forks(_,[]}.
(F2) forks([],['Sends'!_]).
(£3). farks{[Cls!lest],0P2) :-
vait(OFs) |
process{active,0Ps,0Fe,Cls) &
forks(Rest,0Pe?).

Lransfer demand([_!_1,[Pi5371,3).

transfer. demand{[],_,[1}.

Pig.? Lazy Interpreter for Pure Prolog

