ICOT Technical Heport:.TM - 0031

TM-0031

Lecture Motes on
The Bagel: a Systolic Concurrent Prolog Machine
by
Ehud Shapiro
The Weizmann Institute of Science
Rehovot, ISRAEL

MNovember, 1983

Mita Kokusai Bldg. 21F {03) 456-3191--5
" :O | 4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

The Bagel A Systolic Concurrent Prolog Machine

Ehud Shapiro
The Weizmann Institute of Science
Rehovot ISRAEL

November, 1983

The Bagel: A Systolic Concurrent Prolog Machine
{Lecture Notes)

Ehud Shapiro
The Weizmann Institute of Science
Rehovot, ISRAEL

November, 1983

Abstract

It is argued that explicit mapping of processes to processors is
essential to effectively program a general-purpose parallel computer,
and, as a consequence, that the kernel language of such a computer
should include a process-to-processor mapping notation.

The Bagel is a parallel architecture that combines the concepts of
dataflow, graph-reduction, and systolic arrays. The Bagel's kernel
language is Concurrent Prolog, augmented with Turtle programs as a
mapping notation.

Concurrent Prolog, combined with Turtle programs, can easily implement
systolic systems on the Bagel. Several systolic process structures

are explored via programming examples, including linear pipes (sieve

of erasthotencs, merge sort, natural-language interface to a database),
rectangular arrays (rectangular matrix multiplication, band-matrix
multiplication, dynamic programming, array relaxation), static and
dynamic H-trees (divide-and-conguer, distributed database), and chaotic
structures (a herd of Turtles),

All programs shown have been debugged using the Turtle graphics Bagel
simulator, which is implemented in Prolog.

Keywords: parallel processing, Concurrent Prolog,
logic programming, graph reduction, dataflow,
systolic algorithms, Turtle geometry.

How to evaluate proposed architectureas?
One criteria [Arvind]: Scalability
- For twice the money, get twice the computer,
or

- The architecture should remain feasible
as the number of processors goes to infinity.

Implication of scalability:
Non-uniform communication/memory-reference costs
(Crossbar switches and their approximations
are not scalable).

Implication of non-uniform communication costs:

-

Ensuring the locality of communication and
memory-references is crucial for efficient
parallel processing.

The Basic Question:
- How to control communication?
or

- How to ensure locality of communication?

Several answers:
(1) "Smart™ load-balancing algorithms.
(2) "Smart” compilers.

(3) Smart programmers and algorithm designers.

Statement:
Answer (1} is not feasible.

A notation for specifying process-to-processor
mapping is required by answers (2) and (3).

Statement:
Designing efficient process structures (which)
localize communication) for parallel program is
as difficult as designing efficient
data-structures for a sequential program
(cf. systolic algorithms),

Statement:

No practical system for sclecting
data-structures is available,

Conclusion:

Answer (2) is not feasible (in the forseeable
future).

Systolic Algorithms

- Developed by Kung and colleagues at CMU,
for direct implementation in VLSI.

- Combine pipelining and multiprocessing
in a single framework.

- Achieve massive parallelism

- Applied so far mostly to numeric problems.

Example: A systolic algorithm
for band-matrix multiplication

(See figure).

Statement:
Multiprocessing adds a new dimension of
programming,
To run efficiently on a sequential computer, programs
must control the usage of
- Space and
= Time,

To run efficiently on a parallel computer, programs
must control the usage of

- Space,
- Time, and

- Communication.

Implication:
Algorithm designers and programmers should
have control over the mapping of processes to
Processors.

Implication:

A programming language for a parallel computer
should include a mapping notation,

Implication:

The multiprocessor’s interconnection scheme
must be simple, intuitive, and of general purpose,
for programmers to use it effectively.

Objection:

Programming is difficult as is. Incorporating
explicit control of process-to-processor mapping
would make it horrendous.

Answer:
Programming in higher-level languages is easier.

There seems to be a tradeoff between the complexity
of data-structures in sequential programs and
communication-structures in parallel programs, so
overall program complexity is preserved.

Our experience shows that the mapping component of a program is
relatively small, is not difficult to specify (children’s
programming...), and can be debugged independently of the main
algorithm,

Objection:

Exé.!ig;it mapping by user is too simple-minded
and rigid. More sophisticated and flexible
mapping strategics are essential for many
applications.

Answers:
= Simple is beautiful.

- Our example programs provide evidence to
the contrary.

- Load-balancing algorithms may be required in
a multi-user environment. However, they
should be implemented by the systems hacker,
not the hardware architect. Hence the
kernel programming language needs a mapping
notation, Q.E.D,

A Concurrent Prolog Ad

Concurrent Prolog combines the logic programming
computation model with guarded-command
indeterminacy and dataflow synchronization.

It is simple. It adds to pure logic programs only
two control primitives:

- The commit operator (for indeterminacy).
- Read-only annotations (for synchronization).

It is expressive. Applied so far to:
- Systems programming
(ICOT TR-003; POPL-84; LPS-84;
A.Takeuchi and K.Furukawa, LPW-83).
- Systolic algorithms (this talk).

- Distributed algorithms
(A.Shafrir, Weizmann TR CS83-12; L Hellerstein, LPS-84).

- Object-oriented programming and constraint systems
A Takeuchi, J. New Generation Computing 1(1)).

- Parallel parsing
(H.Hirakawa, ICOT TR-008).

- Hardware specification and debugging
(N.Suzuki, in Logic Programming and its
Applications, Warren & van Caneghem (eds), 1984).
- Imglcmentatic-n of embedded languages:
r-parallel Prolog (Hirakawa et al,, ICOT TR-020).

Mandala: A knowledge-programming language
(K.Furukawa, A Takeuchi, and $.Kunifuji, ICOT TR-029).

It is amenable to efficient implementation (we hope...).
So far has only an interpreter implemented in
Prolog (ICOT TR-003),

The Bagel: A Systolic Concurrent Prolog Machine

- Architecture:
rectangular grid of transputers with
nearest-neighbor and shifted end-round
torroidal interconnections.

- Programming language:
Concurrent Prolog, augmented with Turtle
programs as a mapping notation.

- Major application method:

Systolic algorithms.

- Implementation state:
Software simulators written in Prolog

{with Turtle graphics) and Concurrent Prolog

(very slow) exist. ‘
Programs below were debugged using the
Turtle graphics simulator,

Constructing the Bagel: Step |
(See figure).

Constructing the Bagel: Step 2
{See figure).

The Bagel
(See figure).

Aspects of the Bagel's interconnection scheme

- Virtual infinite two dimensional grid)
(programs need not know the dimensions of the
Bagel).
(convenient communication structure for many
applications)

= A path in any direction will visit every

rocessor once, before returning to its origin,

f’supparts EVEN mapping).

- Simple to implement in current and forthcoming
technologies.

= Scalable.

Aspects of the Bagel's computation model

- Basic computation step:
Process reduction.
- Synchronization:

Data-flow (read-only variables).

- Interprocessor communication:
Packets containing:
* instantiations of shared variables.
* processes and their associated programs,
* process control messages (success, failure).

Aspects of the Bagel's transputer

Each transputer consists of:
- Reduction processor (pipelined?)
- Random access memory
- Communication processor,
- Associative memory
- Interface to external 1/0.
Possible optimizations:
- Cache
- Two-port memory.
Possible approximations (hardware simulators):

- Reduction processor and communication
processor are off-the-shelf chips.

- Associative memory simulated by a hash table.

Schematic design of the Bagel's transputer

(See Figure)

The Bagel's kernel language

Concurrent Prolog augmented with fixed-instruction
Turtle programs as notation for mapping processes
to processors.

Goals (processes) can be of the form Goal@TP
meaning, solve the rgna] {execute the process) Goal at
the processor specified by the Turtle program TP.

Each process, like a Turtle, has a gmiticn and a
heading. The initial position and heading of a
child process is inherited from its parent,

Fixed-instruction Turtle programs are a sequence of
instructions of the form:

forward(Distance), back(Distance), left(Angle),
right(Angle), turn(Degree) (absolute heading)
[i,J] (absolute pﬂsitiong, stay (no-op).

(currently only integer Distances and 90 degree
Angles are implemented),

Examples of process configuration schemes

Linear pipes:

- Sieve of Erasthotenes.

- Bubble sort.

- Merge sort.

- Natural language interface to a DB (scheme),
Rectangular arrays:

- Rectangular matrix multiplication.

- Band-matrix multiplication,

- Dynamic programming.

- Array relaxation.
Static H-trees:

- Divide-and-conquer (towers of Hanoi),
Dynamic H-trees:

- Distributed database (scheme).

Linear pipe: Sieve of Erasthotenes
Abstract process structure:

primes :- integers, sift@forward.
sift :- filter, sift@forward.
filter :- filter.

Integers :- integers.

Concurrent Prolog Code:
primes(J) :- integers(2,I), sift(I? J)@forward.
sift([PII] [PIR1?]) :- filter(IP,R), sift(R? R1)}@forward.

filter([NII],P,R) :- 0=:=N mod P | filter(I,P,R).
filter(|NH|P [NIR?]) :- 0=\=N mod P | filter(LP,R).

integers(N,[NI?]) :- NE=N+l, integers(NLI).

Linear pipe: Bubble-sort

(Linear time and process complexity)
Abstract process structure:

bsort -
bfilter,
bsort@forward.
bsort,

bfilter :-
bfilter.
bfilter,

Concurrent Prolog Code:

bsort([XIXs), [YTYs]) :-
bfilter{X, Xs?, Xsl, Y),
bsort{Xsl?, Ys)@forward.
bsort({], []).
bfilter(X1, [X2IXs), [X2[Ys), Y) :-
X1<X2 | bfilter(X1, Xs?, Ys, Y).
bfilter{ X1, [X2[Xs], [XUYs), Y) :-
Xl>=X2 | bfilter(X2, Xs?, Ys, Y).
bfilter(X, [], [], X).

Linear pipe: merge-sort

(Linear time and logarithmic process complexity)
Abstract process structure:
msort.
msort :-
merge_all,
msort@forward,

merge_all.

merge_all :-
mergel,
merge_all.

mergel.
mergel :-
mergel.

Linear pipe: merge-sort

Concurrent Prolog Code:)
(Note: input is a list of sorted lists).

msort([], []).

msort([X], X).

msort(Xs, Zs) :-
Xs\=[], Xs\=[_] |
merge_all{Xs, Ys),
msori(Ys?, Zs)@forward.

merge_all({], []}.

merge_all([X], [X]).

merge_all([X1 X2IXs], [Y?Ys?)]) :-
merge2(X1?, X2?, Y),
merge_all(Xs, Ys).

merge2(][], X, X).
merpe2(X, [], X).
merge2([X1Xs], [YTYs], [XIZs?)) :-
X=<Y | merge2(Xs, [YIYs), Zs).
merge2([XIXs], [YIYs], [YIZs?]) :-
>Y | merge2([XIXs], Ys, Zs).

Linear pipe: Natural language interface to a
database (scheme).

Abstract process structure:

Process :-
morphological,
syntax@forward(1},
semantics@forward(2),
pragmatics@forward(3),
planning@forward(4).

Concurrent Prolog code (scheme):
process(String, Query) :-

morphological (String?, Tokens),
syntax(Tokens, SyntaxTree)@forward(l),

16

semantics(SyntaxTree?, Formula)@forward(2),

pragmatics(Formula?, Formulal)@forward(3),

planning(Formulal?, Query)@forward(4).
Advantages:

- Can pipelined multiple queries.
- Code for each stage resides only in one processor.

Rectangular array: matrix multiplication (1)

{Linear time and quadratic process complexity)
Abstract process structure:

mim.
mm :- vm&right, mm@&forward.

vmn.
v :- ip, vin@forward.

ip = ip.
ip.

Concurrent Prolog code:

mm({], _, {I).
mm([XIXs], Ys, [ZIZs]) :-
vm(X, Ys?, Z)@right, mm{Xs?, Ys, Zs)@forward.

vm(_, 1], (]
\rm{Xs [Y|Yﬂ] [Z178]) -
1]:!{)(5"" Y? Z), vmm(Xs, Ys?, Zs)@forward.

ip(Xs, Ys, Z) :-
ip(Xs, Ys, 0, Z).

ip([XIXs], [YIYs], Z0, Z) :-

ZI:=(X * Y)+Z0, ip(Xs? Ys?, Z1, Z).
ip(l). [} Z, Z).

Rectangular array: matrix multiplication (2}

A variant of the previous program, that pipelines
the vectors, instead of sending them as a whole.

mm([], _, []).
mm([XXs], ¥s, [2IZs)) =-
vm(X, Ys?, Ysl, Z)@right, mm(Xs?, Ysl?, Zs)@forward.

vm(_, [}, 1. [D.
vm(Xs, [YIYs], [YUYsl], [ZIZs)) :-

11

ip(Xs?, Xsl, Y?, Y1, Z), vm(Xsl?, Ys?, Ysl, Zs)@forward.

ip(Xs, Xsl, Ys, Ysl, Z) :-
ip(Xs, Xsl, Ys, Ysl, 0, 7).

ip([XIXs], [XiXsl], [YIYs), [YTYsl], Z0, Z) :-
ZI:=(X * Y)-Z0, ip(Xs?, Xsl, Ys? Ysl, ZI, 7).
ip(fl. [1 [1], Z, Z).

Rectangular array: dynamic programming

(The systolic algorithm of Kung, Guibas, and Thompson)
Abstract process structure:

table,

table ;-
row@right,
table@ forward,

LW,

TOW -
entry,
row@forward,

entry.

Rectangular array: dynamic programming

Concurrent Prolog code:

Input: a list of triples (0,D1,D2), where the D's
are matrix dimensions,

Output: (W.D1D2), where W is the number of
multiplications in optimal parenthesization.

table([W] W).

table{Ws,Min) :-
Wsi\=[_] |
row{Ws Wsl)@right,
table(Ws!? Min)@forward.

row(|_]I]).

row([W1L,W2IWs] [WIWs1?]) :-
entry({ W1, W2, W),
row([W2IWs] Wsl)@forward.

entry((WLLLRI),(W2,L2, R2),(W,LLR2)) :-
W:=min(WI-L1*R1*R2, W2+LIsL2+R2).

[MODEFRH

Note how diagonal communiecation channels
between table entries are created by the row
procedure.

H-trees: A scheme for divide-and-conquer

Abstract process structure:

htree.

htree :-
htree@(left forward),
htree@ (right,forward),

Concurrent Prolog code:

htree(0).

htree(Ds+) :-
htree(D)@(left forward(2(D/2))),
htree(D)@(right forward(2(D/2))).

Note: p(X+,.) - .
Is a shorthand for: p(Xl,...) - Xt>0 | X:=X1-1, ...

H-trees: The Towers of Hanoi

Abstract process structure:

hanoi,

hanoi :-
free,
hanoi@{left, forward),
hanoi@(right forward).

free.

Concurrent Prolog code:

hanoi(0,From,To,(From,To)).

hanoi(N+ From,To,(Before,(From,To),After)):-
free{From,To,Free),
hanoi(N From, Free Before)@ (left forward(2(N/2))),
hanoi(N,Free, To,After)@ (right forward(2(N/2))).

free(ab,c).
free(a,c,b).
free(bac).
free(b.r:,a%.
free(c,ab).
free(c,b,a).

Rectangular array: band-matrix multiplication

(The systolic algorithm of Kung and Leiserson,
linear time and quadratic process complexity)

Abstract process structure:

mm :-
spawn_isp,
arm@forward,
arm@right,
mm@ (forward,right forward left).
mm.

arm.

arm :-
spawn_isp,
arm@&forward.

spawn_isp :-
isp.

spawn_isp :-
forward,

isp.

forward.
forward :-
forward.

isp :-
_ isp.
isp.

Concurrent Prolog code:

mm{D,[AinlAsin],|Bin[Bsin],c(Clout,Cout Crout)) :-
spawn_isp(D,0,Cin?,Cout,Ain? Aout, Bin? Bout),
arm(DD,Asin? Asout,Clin,Clout,Bout) @forward,
arm(D,Bsin? Bsout,Crin,Crout,Aout)@right,
mm{D-1,Asout? Bsout? ¢(Clin,Cin,Crin))@(forward,right forward left).
mm(D,[LILc([L[LID).

% D is the diagonal distance from the center-point x.
% V is the vertical (horizontal) distance from x’s diagonal,
arm(D,Asin,Asout,Cin,Cout,Bin) :-

arm(D,],Asin, Asout,Cin,Cout, Bin).

aem(D.V L) ‘ ‘
arm(D,V [AinlAsin] [AoutlAsout],[CiniCsin],[CoutiCsout], Bin) :-
fﬂrpawn_isp(D,V.Cin?,Cout,Ain? Aout,Bin? Bout),

L:=V+],
arm(D,V1,Asin?, Asout,Csin,Csout,Bout)@forward.

14

spawn_isp{0,V,Cin,Cout,Ain, Aout,Bin,Bout) :-
@ we are in the 0's area_.,
isp(Cin,Cout,Ain,Aout,Bin,Bout),

spawn_isp(D,V,Cin,Cout, Ain, Aout,Bin Bout) :-
D=0 | 9% we are in the A (or B) area...
forward{min{D,V},Ain,Ainl, Acut, Aoutl),
1sp{Cin,Cout,Ainl? Aoutl, Bin, Bout}.

spawn_isp(D,V,Cin,Cout,Ain,Aout,Bin, Bout) :-
D<0 | 9% we are in the C area...
forward(-D,Cin? Cinl,Cout,Coutl),
isp(Cinl? Coutl, Ain Aout Bin Bout).

forward(0,Cin,Cin,Cout,Cout).

forward(N«+ Cin Cin2 Cout,Cout2) :-
%et_c{C,Cin.Cinl}. send(C,Cout,Coutl),
orward(N,Cinl? Cin2,Coutl Cout2).

get_c(0,[111).
get_c{C,|GCs).Cs).

isp(Cin,[CliCout],[AlAin] [AlAout] [BBin) [BBout]) :-
get_c(C,Cin,Cinl),
Cl:=C+(A = B} |
isp(Cinl?,Cout,Ain?, Aout,Bin? Bout).
isp(Cs,Cs,As,As,[][]1).
isp{Cs,Cs,[].[].Bs,Bs).

Rectangular array: array relaxation

Abstract process structure (simplified):

relax ;-
monitor,
matrix@forward.

matrix :-
vector@right,
matrix@forward,
merge_Mmonitor.

vector :-
spawn_cell,
vector@forward,
merge_monitor,

spawn_cell :-
cell_monitor,
cell.

cell :-
cell,
cell_monitor :-
cell_monitor.

merge_monitor :-
merge_monitor.

monitor :-

Lo

monitor,

Rectangular array: array relaxation
Concurrent Prolog code:

relax(X)Y) -
monitor{Monitor? Halt),
matrix((1,1}, X Bottom, Top,Monitor,Halt?)@forward,
tie_vector{Bottom?),
tie_vector(Top?).

Pematrix{Coordinates Matrix Nextrow channels Final channels).

matrix(_|[]. Top, Top.[]._).

matrix{(L]),[XiXs] Bottom, Top,Monitor,Halt) :-
vector((1,J), X Bottom,Bottoml, Vmoni tor,Halt)@right,
matrix((I+1,7),Xs Bottom], Top, Mmonitor, Halt)@forward,
merge_monitor{Mmonitor?, Vmonitor? Monitor).

tie_vector([]).
tie_vector(| X[Xs]) :-
tie_cell(X), tie_vector(Xs?).

vector(1J,Xs Bottom, Top, Monitor, Halt) :-
vector(1J, Xs Left Right,Bottom, Top,Monitor, Halt),
tie_cell{Left),
tie_cell(Right).

%vecmr{CrmrcI,ch:r:hannel,Ri?tchannel,Bcttnnu:hannels,Tnpchn]n},

vector(1J,[] Right,Right,[].[1,[],_).

vector((1,J),[XIXs] Left, Right,[BottomBs) | TopiTs],Monitor,Halt) :-
spawn_cell((LJ), X, Left,Leftl Bottom, Top,Cmonitor, Halt),
vector((I,J+1), Xs, Left] Right,Bs, Ts,Vmonitor,Halt)@forward,
merge_monitor{ Vmonitor? Cmonitor? Monitor).

tie_cell{e(X X)),

spawn_cell(1J _X,c:{Lin,Dut},c{Gut,Rin},c{Bin,Dut},c{Dut,Tin],Munimr,Hnlt] -
send{X,0Out,Outl) |
cell_monitor(X,0utl? Monitor),
cell(1J, Halt,Outl Lin? Rin? Bin? Tin?).

cell(IVhalt,[)_,_,_..).

cell{1J, Halt,Out, [XIL),[X2R][X3B] [X4T]) :-
X o= ((X1+X2:X3:+X4) [4) |
send (X, Out,Outl),
cell(1J,Halt,Outl,L2,R2,B2,T?).

cell_monitor(X1,[X2IXs) [haltl¥s]) :-
X1=:=X2 | cell_monitor{X2,Xs?Ys).

cell_monitor(X1,[X2Xs],[continuefYs]) :-
XI'=X2 | cell_monitor(X2,Xs? Ys).

cell_monitor(_[].[]).

merge_monitor(Xs,Ys,Zs,Halt) :-

merge_monitor(Halt,continue Xs,Ys Zs).

merge_monitor(hale,__._[]).
merge_monitor{ Monitor State [X1Xs] [YTYs],Zs) :-
merge_messages(State XY Zs Statel Zsl),
merge_monitor(Monitor Statel Xs?,Ys? Zsl).
merge_moniter(Monitor,State, Xs,[],Xs).
merge_monitor{Monitor, State [}, Xs,Xs).

merge_messages(halt continue, Y [continuelZs) continue, Zs).
merge_messages{ halt, X continue [continuelZs] continue Zs).
merge_messages(X halt halt, [haltlZs] halt, Zs).
merge_messages(continue X continue, 75 continue Zs).
merge_messages(continue,continue, Y, Zs,continue, Zs).

monitor([haltiXs) halt).
monitor{[continuelXs] Monitor) :-
monitor{ Xs? Monitor).

Chaotic process: A Turtle.

Concurrent Prolog code:

turtle :-
instream(X), turtle(X?).

turtle{[]}).
turtle([XIXs]) - turtle(Xs?)@X.

Dynamic H-trces; a scheme for a distributed database

- Relations are stored in the leaves.
- Tree nodes route queries and merge responses.
- Database grows dynamically.

Abstract process structure:

root -
root,
leaf.

root :-
TOOL.

tree :-
odd |
tree@TP.

tree:-
even |

tree@TP,
tree.

leaf :- leaf_split@TP.
leaf.

leaf_split :-
tree,
leaf@(right forward),
leaf@(right forward).

Concurrent Prolog code:

roat(Xs) :-
root(0,Xs?,Ys),
leaf(Ys?).

rmt{]il,[s;rliltl.Ks],[sp]it[Dl,smy}ﬁ' 8?]) :-
root(D1.Xs?,Ys).
root(D,[],[]).

tree([split(D++, TP)IXs],
[split(D,(right, TP left))L7),
[split(D,(left, TP, right) IR?]) :-
odd{D) |
tree(Xs? L R)ETP.
tree((split(D++, TP)IXs),
[split(D,(right, TP left,forward(DI1)))L?),
[split(D,(le t,TP,right forward(D1)))R?]) :-
even(D}, DL:=(2(D/2-1)) |
tree(Xs? L R)ETP,
tree([LI1,[]).

leaf([split(_, TP)Xs]) :- leaf_split(Xs?)@TP.
Leaf(1},

leaf_split(Xs) :-
tree(Xs L R)
leaf (L?)@ left, forward),
leaf(R?)@(right forward).

odd(X) :- X=\=(X/2)s2.
even(X) - X=:=(X/2)92.

L HIYS

= -

| dais joSog ayi Su1ondisuo)

13

| 1S

mv

mmwm/;,\)(!w/x \

e wrw»ﬁwﬁm =5

13

_--""‘
!

— — — ———

7 dais 728pg ay1 Su1ondisuo)

I , ¢
¥
; i "
i 'l
/
‘I‘.
rd F
] I 7
[! y -7
-
VWO N 7 -
f Ot
‘ — ——
] _.r.l.fr
~ f.;.._.,...
LW o >
;! v b
L1 L] I..r
i . ¥ ¥]
i i ' .__.
I I
I 1 1
i
' il
[! !
A

j128og 2yl

Schematic design of the Bagel's transputer.

C P - CoMavaa vm, m#{-ﬁ PTM”’"

RP - ,._,{.I;,H
AM -

Prrcﬂ-ﬂ#f‘

&‘:uc;a"’ivt M.{hﬁapj

PAM — I‘ﬂ'wb"\ ot 20d h-..t.h.,m..y

S9559204d JO 10}09A D buiumodg

23

Bu inJdag

g |8ae| bojouy

2 FTWEAILEIN0 Wew(Saw ad)

X0

(18, d2y (& Yol yB3Ipaad-Tasal-doy) uoijedipaid-Tasat-doy 3182 | paJd-3ul jap)

fudloung dsi e 51 3 “BSJAMIUN juadand & 3 Ul
32uny] nq

A0

i
FaL (B Jo ‘u 4y sd517 Wi 53 uny

Pauljap jou 5| ©J

"winb oy 3Jogy ‘anuljuod oy NSy yyINg yurodyeasge
EZ ‘WEBJIISIND Wim

\

ET 'We3alysing wams
Al TWEIAFFINGD WM
ET 1WEaJISIND whs,
Tl "WBDIISIND wmnN
g FUBSIALSIND sm#
S TUB3IYELIN0 meu
E IWEBLYSING wun

EE) LT (éd4é * £2) 4031 3)-
€2) BT (édé * EZ) 4031 4)-
46 7 €2Z) (édé v ET) 1418y~

(Tdé é4é 1918)4

NO zss, 3 jomJ0jy) bojoud)x

((été
£2) 2
SZ) €
(4¢ S
£€2) L
ES) T1

€2) e1

* 1Z) £z sJebequy)-

(élé
(édé

(¢4

L]
[
L.
. o

—
[

=
o

tL2)
' 52)
' 82)
' EZ)
' ET)
*ET)

L ALY

481 13)-
49711 4)-

4831143 -
A8 14y~
48111 4)-
J93114)-

24

bBuindas

T1231103 abequeE o) jo0U 33ala nod g
*Trey ABW (PD-J9) 24043q 3487 Bulsuga }o spJo

y

["UdIjBwJD4ul J0W JO§ (SNIHLS~"
3431 SPJOM LETTdER"E B
M SH1'911 asey noy g

*311Mb 0} 340Gy ERUIJUDD 0} Dwnsay f3H3¥E yurodxEaupe

g |ene| bojouy

{353319)

& * Ri) (sxg ' sp) jJosq)y

(shi sTSX. j408q))

Jole|nm|§ |ebeg

((shg *

£y EZ 9¥2Z ¥E) 2

PE) (8X¢
bE) (8X¢
bPE) (SXS
PE) (8%¢
PE) (SX¢

€) (sx¢ °

bE) €
bE) S
$E) S
¥E) 9
¥€) 9

$E) $E

fiiy noyy
4911393
83111494
483113934
J811139)y
J483113q)0
4831 14q9)4

493 1149)L

-
w4

BuinsaE

g |8n8| Bojouy

[TUdIjeWIO Ul Biow JO) (SMLHIS-]
"3231102 aGequeb 0} jou 33E[3@ NoA J1 343 SpJod FUE"He5"2 BA
"TrE) ABW (YO-J9) P4043q 143 GUISUDD 4O SPIOM J59°LaT SABy nocL £39

"RIND 0% 1004 CANUIJU0D 0} BWnsay {yyINE v odyes.ags
Ef TWRIILSINO M
bE FWEBAIISIND wuw
$E TWEAIISIND W

r E2 TWEAJISENG wekw
g P WEIILSLIN0 e

9 fWEIAISIND meE

§ TWEBILSLINO we#

S IWEIIISLMNO me

£ TWEBAIISIND wuK

2 TUBAJYSLN0 wem| 35330

Joje|nwis |ebeg

S(PE |!1U J1U g JBY|134q)-- N xex, 1 188J03) Gojoud)x
S(PE |1U |1U pg 483 14G) -~ shi (2 1tu 1w 2 Jeypigq)-
S(E® |'U |I1U £ JB}|14G)-- 9S) (E [!V |1U £ Jo}[1Jq)-
S(Sb |!U [I1U §p JBY]14q)-- 95) (S |1V J1U § Je}[14G)-
)(38 |1U J1U 95 J8}|!jq)-- 9S5) (S 1'U |IU § JBY|14Q)-
(92 [1u |1uU 9bZ J83|14q)- 95) (9 [1U |1u 9 JB}[14q)-

(11U iy ju0sg)- 95) (9 [IU JIU 9 J8}|14q)-

SI(EZ |'u |Iu g2 Je}|!}q)-

o

Ond

$35$8204d 0 AD.4iD uo bulumbpdg

Example Spawning the matrix multiplication processes

() — wmn

O - v~

G—EP

(O—20 —=@—a-0

Sfanw h‘li:) | -~ 2‘;*2"-
Pr.jf‘ahnhlhj

23

An Example:

Spawning a binary tree

nff‘x16=1
X X X X X X X X
XEX XX X XiIx
XEXIX}ix XXX
|
X XX X XX X
X XX X XX X
[§ byl
X{XEX]IX X X
XEIX X§X X XiX
I
X X X X X X X
’*-""—-——_. |
‘ i
| t
[
i
i f
IIL .
[}
j k
§ - o l
1 \
\
.h""-\"""—'-w,.-—-.l'

X

X

o
#h

rw._...—-"'""-’- - aa L e,

I\

X

X

-

6 processes on the Bagel

X X X X X

X XX X

o
»
-
>
]

b
-4
>
>
b

X

L™

l‘!“_

::I‘I '::I‘l

2, a, &,

for band-matrix multiplication

Exgmple. A systolic algorithm

Spawning the e tY O

wa

O - Mmw

0 - 5rnwn ¥ m

O - isr

