ICOT Technical Report: TM-0008

TM-0008

A Relational Database Machine
“Delta”
(Translated form IPSJ)

by
Takeo Kakuta, Nobuyoshi Mivazaki,
Shigeki Shibayama, Haruo Yokota
and Kunio Murakami

May, 1983

©1983, 1COT

Mita Kokusai Bldg. 21F {03) 456-3191~5
| [:D | 4-28 Mita 1-Chome Telex ICOT]32964
Minato-ku Tokyoe 108 Japan

Institute for New Generation Computer Technology

L Relational Database Machine "Delta”™ (I)

-=-=Background and Objectives of its Development--—

Takeo Kakuta, Mobuyoshi Miyazaki, Shigeki Shibayama,
Haruo Yokota, Runio Murakami

Institute for New Generation Computer Technology (ICOT)

1, Intreduction

The Fifth Generation Computer System {FGCS5) project's major
aim is to carry out researches and develop a prototype of a
knowledge-information-processing oriented computer based on new
technology to meet the anticipated requirements of the 1990's,
such as an inference function and an intelligent and interactive
function using a knowledge base. The FGCS project is developing
& Relational Database Machine (RDBM) called Delta in the first
research and development stage of Knowledge Base Machines, This
paper will describe the background and objectives of the
development and outline of the functions of Delta.

2. Background of the Database Hachine Development

As the database is extended in both its application £field
and size, the reguirements for a database system with a higher
transaction processing capability arises. To implement such a
systen, it 1is necessary to develop a database machine as a
dedicated processor for the system, Various experimental
machines [l],[2] and several commercial database machines have
been introduced.

In the knowledge information processing field, high speed
knowledge base searching and knowledge operation functions are
reguired because, in addition to mere storage of a large amount
of knowledge, inference is performed using the Knowledge.
Developing a Relational Database Machines as a part of the FGCS
project will prove effective for not only establishing the basic
technologies for the research and developnent of a knowledge
information processing but alse implementing large-volume
database machines in the future,

3, Development Steop of a Knowledge Base Machine

(1) Initial Stage: The knowledge base system functions are
considered to be divided into inference functions and database
functions, For each <¢lass of function, we plan to develop
software and hardware research and development support system by
integrating two experimental subsystems = a seguential inference
machine and a relational database machine.

{2) Middle and Final Stages: By gradually amalgamating the
inference functions with the knowledge base functions, a highly
parallel knowledge base machine will be investigated and

Page 2

developed in the middle Stage, and a knowledge information
pProcessing system, in the fipal stage,

4, Goals of the Relational Database Machine Development

The development of Delta has the following three items as
the major targets;

(1) To provide a computer system with multiple Sequential
Inference Machines (5IM's) and Delta connected via a local area
network (LAN) as a prototype tool for software and hardware
research and development support by the end of the initial stage.

{2) To perform various experiments and measurements, to collect
evaluation data for the research and development of Knowledge
Base Machines, to extract from the results necessary functions
for supporting knowledge operations based on relational algebra
operations and to make suggestions on expansion and improvements
Of architecture required for implementing these functions,

{3)To check and evaluate processing algorithms of RDBMs and make
a research into highly parallel database machines,

5. Delta Overview
5.1 Functional Design Reguirements

(1} Delta must be capable of storing databases with a total
capacity of about 10 Giga bytes, as well as berforming high-speed
and efficient search, update and other relational algebra
operations.

(2) Delta is connected to miltiple Seguential Inference Machines
(8IM) wia a loecal area network, or otherwise directly to one,
With the hardware and software (including firmwvare) within Delta
and the relational database management software working in a SIM,
Delta must be able to efficiently support gqueries sent to
external database frem a user program written in the kernel
language, the logic programming language of ICOT,

Fig.l shows the relationship between Delta andg SIMs,

{3) In order to satisfy the needs of various experiments
conducted for the research and development of knowledge base
machines and a high speed parallel knowledge operation mechanism,
Delta must be organized to provide data collection functions as
well as the architectural flexibility for Hierarchical Memory
expansion and additional RDB Engine attachment.

5.2 Characteristics of Delta's Architecture .
Fig.2 shows a conceptual diagram of the interfaces between

Delta and the SIM software illustrated from the architectural

Standpoint. Delta consists of five subsystems as shown in Fig,3.

(1) Queries from a user Program written in the kernel language or
a8 natural language are converted into commands at the relational

Page 3

algebra level., In other words, when a gquery is sent to an
external database from a user program written in the kernel or a
natural language, the relational database management software in
SIM converts it to a relational algebra level command and

accesses Delta via a LAN.

(2) The load of the software in the RDBM*s Control Processor 1is
distributed by delegating data manipulation functions and memory
management functions, which are equivalent to the operating
system for an ordinary database management system, to the

dedicated hardware,

{3) Relational Database Engine (RDBE) 1s a dedicated processor
which performs a hardware-oriented relational algebra processing
algorithm based on sort and merge operation. Under «control of
Control processor, it efficiently performs relational algebra
command processing on relation data supplied in stream form <from
Hierarchical Hemory.

{4} Hierarchical Memory (HM) stores a large amount of relations
and directory/dictionary information. Hif consists of the
following three lavers with different capacity and access time;
from bottom to top.

{a) moving head disk
{b) silicon disk (SDK)
{c) high speed working buffer

{5) Control Processor {CP) performs resource management,
directory/dictionary management, concurrent control and other
processes for RDBE and HM. The control software for entire Delta
resides in CP,

(6) Interface Processor (IP) is responsible for the LAN adapter
interface functions with CP and HM, It passes to CP a relational
database query command sent from SIM via a LAN, and sends back
the resulting relation to the request user,

{7) Maintenance Processor (MP) has status monitoring,
initialization, diagnostics and data collection functions for

Delta.
6. ©Conclusicn

RDBM Delta is currently in the stage of functiocnal design.
We will report the results occasionally, when its design is
proceceded to the detail stage or when evaluation and experiments
are performed after the completion of Delta system.

Page 4

o + e et + et
| ! ! | I I
| PsI | | PSI I ... | PSIL i
I I i I I !
Fomm—————— + m——— ———4 o —————— +
| I I
R e e s S E SE S EEto T OO OO+ DT ST S o Edman TS S S
I | LAN
| I
fmm + tm———— o
| I | f
i RDBM mz====== PSI |
| DELTA | I [
! r $mmmmmmomoct
trm— e m e +

Fig,1 Relaticnship between Delta and SIM's (PSI's)

Fom———— USER LAMGUAGE-————=——- PROLOG===== +
I INTERFACE ! INTERFACE | T
| | |
| LANGUAGE fmmmm PROLOG (KL) | |
| | | S1M
| PROCESSOR | PROCESSOR | SOFTWARE
| e ——— e - | |
! I RELATIONAL DATABASE | [|
| | MANAGEMENT SYSTEM | | |
| | {RDBMS) | | |
| | | i v
===z===ss====== ROBM INTERFACE ;=;;n=nzzn--'=:==h
| |
| INTERFACE PROCESS0R | f
e ——————————— | |
I | | |
I CONTROL PROCESSOR | | |
Fom——— - e e e Nt e !
[| ! I |
| DIRECTORY | | RDE i | RDBM
| | | ! l
i MANAGER | | ENGINE | | [
| i | | | |
e me——— + oo + | |
| HIRERARCHICAL | |
| MEMORY | |
| | v
e ——————————— +

Fig.2 Conceptual Diagram of the Interface Between Delta and

the SIM Software Illustrated from the Architectural Standpoint

Page 5

Local Area HNetwork

Multibus [
| I
| ———————————
| | |
] I P | sessm=====+
| | ! |
T |
| | I
| I
----------- !
| | !
| ¢ » | I
| | |
_____ o i
I |
fmmm———————— fom——————— + |
I ! |
| I ! |
| EDBE | 2===m=nmae= | H M |

Fig.3 Punctional Diagram of Delta
7. References

[1] H.Schweppe et al. ," RDBM-A Dedicated Multiprocessor Systens
for Data Base Management " , Proceeding of the International
Workshop on Database HMachines August,l1982

[2] F.Bancilhon et al,., ," VERSO: B FRelational Back-End Data
Base Machine " , Proceeding of the International Workshop on
Database Machines,August,l1982

A RELATIONAL DATABASE MACHINE DELTA (II)
=BASIC ARCHITECTURE-

Shigeki Shibayama, Takeo Kakuta, Mobuyoshi Miyazaki,
Haruo Yokota, Eunio Murakami

Institute for Mew Generation Computer Technology (ICOT)

l., Introduction

The Relational Database Machine "Delta” planned for
development by the end of the initial three-year-long stage of
the Fifth Generation Computer Systen (FGCS) project is
characterized as follows:

1) Stores the database (knowledge base) for an application
system and works as a development tool for the system.

2) Functions as an experimental machine to conduct research
and development of knowledge base machines,

Functions emphasized in the development stage include:

1) Comrmunicates with the personal inference machine (PSI)
via a local area network (LAN) and receives a query to a
database.

2) Provides a database machine with a memory capacity in the
gigabyte order and a hardware processing mechanism,

These objectives must be accomplished in conjunction with
the development of the relational database management system
(RDBMS), the software of the PSI.

2, External Interface

A relational-algebra-based command set has been selected as
the interface for Delta for several reasons:

1) If a body in a prolog program {clause) is found to exist
in the external rather than internal database when the
clause is executed, it is possible to postpone evaluation
of the body and, when a number of such bodies are
accunulated, to issue a guery for the entire batch of
bodies. In this case the use of relational algebra makes
it easier to express the guery [1],[2].

2} When performing a relational model operation with
hardware in the database machine, relational algebra well
matches the algorithm we use,

3) Relational algebra can provide a sufficiently high-level
non-procedural interface.

The command set so far established 1s included in [4].
Since Delta 1is shared among multiple wusers, it must provide
external interface functions such as concurrent execution and
control of transactions, data recovery and backout.

Page 2

3. Basic Architecture of Delta

Fig.l shows the basic configuration of Delta. The function
of each subsystem shown in the figure is described below.

1} Control Processor (CP)

Primarily the Control Processor manages process execution
contrelling all of Delta., It analyzes a command-tree given
from hests {(5IM's) and expands it into subcommands for the
hierarchical memory (HM) and RDB engine. While analyzing the
command-tree, the CP references a dictionary to obtain
necessary information for concerned relations, It also
performs concurrent execution control and backout. The CP
software consists of two layers as follows:

i) DB Management level
ii} Unit-Command Process level

The Database Management level 1is similar te the data
management software offered by a conventional DBMS, and
performs major part of ceoncurrent execution contreol, command
analysis, command=tree processing and others. In contrast the
Unit-Command Process level executes the command set of Delta
and is mainly responsible for management and control of
hardware resources. To facilitate development, we have
decided to compose the CP from an existing minicomputer and
Operating System performing inter-process communications.

Local Area Network

-y -F 4§ $_1_1_t 1 -t-3_B B B F 4 F 1 F

Multibus I
| !
| memememeeeeeaa
I | |
e s] I P | B P
| ! i |
[e !
I | I
[I
€© F !
i
_____ R ——
TS —— ¥ T —— +
I
I I I !
RDBE

Fig.l Basic Delta Block Diagram

Page 3

2) RDB engine (RDBE)

The ERDBE is a piece of hardware which executes
search-related Delta commands consisting mostly of relational
algebra commands. Th RDBE has a low=-level subcommand set
associated with Delta's command set. This subcommand set
reflects the RDBE hardware algorithm. The RDBE's processing
algorithm wuses a pipeline merge sorter to sort an input
attribute on-the-£fly with the transfer of the attribute, and
then passes the sorted attribute to the next stage, the
relational operation unit (ROU), to execute a subcommand. We
plan to provide Delta with multiple units which execute this
algorithm and to interconnect them with a network so that we
can experiment the parallel processing of a command-tree.

3) Hierarchical Memory (HM)

The Hierarchical Memory is the actual database store.
Logically, the HM consists of the £following layers
hierarchically structured:

i) Permanent Relation Laver (PRL)
ii) Non-Permanent Relation Layer (NPRL)

The PRL corresponds to permanent relations whereas the
NPRL corresponds te relations which are tempeorarily generated
and cleared in a transaction, Physically, the HM is divided
inte the following hierarchically-structured layers:

a) Moving-Head Disk Layer (MHDL)
b} Silicon Disk Layer (SDL)
c) Working Buffer Laver (WBL)
Fig. 2 shows the relationship between the leogical and
physical configurations. Both the PRL and NPRL are mapped so

that they have their own virtual space in the physical layer.
The WBL iz not shown in the figure,

Fomm—mm—— e e ————————— +
| | [))

| PRL | NPRL | Silicon Disk Layer
I ! |

fmmmm—————— e +
fmmm——————— e ——————— +

| | |)

| PRL | NP RL | Moving Head Disk

I I i Layer
fmmmm—mm——— ——— +

Fig.2 Relationship between the Logical and Physical
Configurations

Page 4

Another important function of the HM 1is to provide a
working space for tuple reconstruction. As described in the
next section, Delta stores, as the internal schema, relations
by attribute (column). Therefore, when outputting a relation
in the form of tuples, the join operation by means of a tuple
identifier (tid) is required, The algorithm for the join
operation reguires multiple buckets according to the length of
attributes reconstructed on the 8ilicon Disk, wertically
stacks attributes in the order in which they were sorted by
their tid's, and reads the buckets horizontally.

4) Interface Processor ([(IP)

The Interface Processor connects Delta to LAN environment
and to the Multibus, It can directly access the HM as well as
receive input and send resulting relations independently of
ce, The Multibus Interface (MBI) offers a bus wvia which
accesses to Delta are accomplished with less owverhead than the
LAN.

4. Internal Schema

Since Delta uses the RDBE to scan part of relations, it does
not reguire an index at the tuple level such as an inverted file,
Te avoid scanning all relations every time, Delta has a directory
consisting of a group of attribute clusters. The first stage of
the directory is divided based on the range of attribute wvalues
and the next stage is divided based on the range of tid wvalues,
Fig.3 shows the configuration of the internal schema. Since both
dre clustered by value, reconstruction can be done by the sorter
in the RDEBE.

5. conclusion

This paper described the basic architecture of Delta,
Further evaluation of the approaches taken in Delta will be
reported through simulations and so on.

6. References

(1) EKunifuji, Yokota, et al., "Interface between Logic
Pregramming Language and Relational Database Management System
(1) -- Basic Concepts --", 26th MNational conference, Information
Processing Society of Japan, 5C-9, 1983,

[2] Yokota, EKunifuji, et al., "Interface between Logic
Programming Language and Relational Database Management System
(2) == Implementation ==-", 26th National conference, Information
Processing Society of Japan, 5C-10, 1983,

[3] Kakuta, Miyvazaki, Shibavama, Yokota, Murakami, "A Relational
Database Machine "Delta" (E)y", 26th MNatienal conference,
Information Processing Society of Japan, 4F-6, 1983,

[4] Yokota, Kakuta, Miyazaki, Shibayama, Murakami, "A Relational
Database Machine "Delta® (III)", 26th HNational conference,

Information Processing Society of Japan, 4F-8, 1983.

Page 5

TID RAMNGE

s o
/?I 1-1% J——> DATE PigE

e |
| 20-39 J—-> DATA PAGT
1

f] : |
Fm——————— +

ATT. RANGE
frm——————— + g —nm——— +
| 1-%% - 1 1=35 |
| ==wmm———— |~ | ===== ==
| 100-199 4 | 36-48 |
| === [=——————— |
200-299	49%-83	
=e—m————		==———————
t	! :	
e +- fmm——————— +

ATT.ND.

Frmm—————— + A bmm—————— + B —m———t
att 1 //,f”	a-az		1-24
=————————		=	==———
att 2 47	b-bz		25-55
—————— i	=m————- I	————————=	
att 3 ,LH	c=cz		56-72
=== !	=		m——————
:		:	I t
dmmm ey fmm——————— + o ——————— +			
R - + fmmm et			
I A-D		1-33	
=——————	[=————————		
E-H		34-63	
semm————		=——————— I	
I-L i	64=-89		
mmmm—————		== I	
:	I		
o ——————— + e - t

Fig.3 Internal Schema of Delta

A Relaticnal Database Machine "Delta®™ (III1}

-== Command Set ---

Haruo Yckota, Takeo Kakuta, Nobuyoshi Miyazaki,
Shigeki Shibayama, Kunio Murakami

Institute for New Generation Computer Technology
(ICOT)

1. Intreduction

Relational Database Machine "Delta" currently under
development will be connected to host machines and function
according to a request from the host machines. We have
established a relaticnal-algebra-based command set as a logical
interface between Delta and the host machines. This paper
describes a Prolog-based simulation which has been carried out to
validate the command set,

Page 2

2. Basic Concept

Since the main purpose of the simulation is to check the
appropriateness of the command set, we mostly check the command
operations but do not intend to evaluate the machine's
performance, However, data collection to find the freguency of
command execution on this simulator can be performed on a limited
scale, since it is easily realized with the addition of a few
praograms.

It is difficult to judge whether the command set really
functions in actual operation by simply simulating command
execution at the relational algebra level. Therefore, we have
decided to make gueries using a database query language which is
a higher-level one than the relational algebra, to convert the
gueries into a Delta command segqguence, and then to simulate the
command seguence using a Delta simulator. As a query language,
we have selected SEQUEL2Z ([1] currently widely used as a
relational database gquery language. Pig. 1 shows the
configuration of the entire simulation process.

SEQUEL Query

| SEQUEL to Command Segquence |
| Interpreter]

I e — | | ___________I 1 [rp— P -

|
| Database |=————— | Delta | ======= | Data Aguisition |
| (Prolog fact) | | Simulator | | Program]

i-uhh*_-________| |_________-_| |_________LH--L___T

Cutput (Table)

Fig. 1 Configuration of the Simulation Process

We have decided to write the simulation system in Prolog
because of several reasons as follows:

{a) Due to its high affinity to relational database, Prolog is
suitable as the simulator for a relational database machine,

() With the pattern matching facility of Prolog, the
interpreter can be written in a fairly easy manner,

{c) Since Prolog has been used as the base of the Kernel
language for the system to be developed in the FGCS project,
an interpreter once written in Prolog can be used, with
little modification, as a basis for a future database guery
system,

Note that the Delta simulator will be used when we investigate
the interface between a logic programming language and a
relational database management system [2].

Page 3

3, Deltaz Simulator

A Prolog program consists of a set of rules and a set of
facts, The set of facts can be considered a small-scale
relational database. In other words, it |is possible to
correspond the predicate name of a fact with the name of a
relation, and each argument with an attribute of the relation.
In this simulator we have decided to use Prolog facts directly as
a database because of two reasons as follows:

i} ©Our simulator which does not evaluate the machine's
performance, ete., can ignore the detailed database
manipulation inside a real machine, such as how database is
actually stored (internal schema).

ii}) It is sufficient for our objective to see how each command
iz executed on a small-scale database of Prolog facts.

Thus, our simulator can be very easily implemented by
directly using facts as a database. Since it is necessary Lo
distinguish facts as a test database from those of a program,
however, we have decided to prepare a relation called "relations®
which has the name of a relation and the number of attributes as
arguments, Although each attributes of a relational database has
its -name, a Proleog fact has nothing but the positional
relationship of each argument, Therefore, we have decided to
prepare a relation called "attributes” which manages the name of
a relation, the name of each attribute in the relatiocn, the
position of the argument corresponding to each attribute, and the
data type and length of each attribute.

For example, from a relatien name "dept" with four
attributes (deptno, dname, loc, empcnt), the following set of
facts are produced:

relations (dept,4).
attributes(dept,deptno,l,integer,7).
attributes (dept,dname,2,char,16) .
attributes(dept,loc,3,char,16).
attributes(dept,empcnt,4,integer,8).
dept(10,research,tokyoc,0).
dept(20,sale,osaka,0).

-

Commands accepted by our simulator are the same as those for
Delta, except that they agree with Prolog's goals in the format.
For example, the following command is used for projection:

projection(dept,(1,3] ,newtable).

where the second argument ([1,3] shows the first attribute
(deptno) and the third attribute (loc) of the relation named
"dept.” Commands like this example must process all the tuples of
a relation, This process is equivalent to one performed in
Prolog on all facts with the same predicate name, and can easily
be implemented using Prolog's backtrack facility. The projection
example above can be realized with, for example, the following

Page 4

program:

projection(SRN,ATTN,RRN) :-
get_predicate(SRN,SRP),
select_attributes {(ATTN,S5RP,RRAG),
ingert_tuple (RRN,RRAG) ,
fail.

Table 1 lists commands implemented for our simulation purpose.

et [
| Relational Algebra Commands Aggregate Function Commands |

| L e

Projection Count
Restriction Summation
Natural-Join Minimum
theta-Join Average

v R i e S B B B . e e S s i

[

|

|

| |

| |
Selection] Maximum |

| [

| |

|

I

I

|

I

Union Egual I
Difference Contain |
Intersection | = ——— e |
Cartesian-Product | Input/Output Commands i
___ S ——
| Update Commands | Get]
R e | Put |
] Delete = e e e |
| Update | Others |
Insert = e]
| =—————————— R - Sort |
| Relation Definition Commands | Unigue I
Rt | Group-by |
| Create-Helation] Select-Group |
| Purge-Relation | Copy |
| Rename-Relation | |
|

Table 1 A list of Delta Commands

Page 5

4, SEQUEL Interpreter

SEQUEL is eguipped with unified functions consisting of
guery, data manipulation, data definition and data control, Our
interpreter simulates most of its functions except some secondary
functions such as VIEW management, consistency contrel and
security control. To follow the original syntax [l] as much as
possible, syntax modification to facilitate simulator programming
in Proleg is minimized. In syntax analysis, the BNF expression
can be maintained almost exactly in the original form in the
interpreter, by effectively using Proleg's unification function.
In addition to this, since it 1is easy to correspond SEQUEL
Etatements to Delta commands, we have used 1list processing to
perform code generation (i.e. conmnmand seqguence generation in our
case) simultaneously with syntax analysis.

For example,

select deptno,loc,
from dept.
where empent=[0].

for these SBEQUEL queries, the interpreter generates Delta
commands as follows:

restriction{dept,[4])=0,templ).
projection(templ,(1,3],tenp2).
get{temp?) .

5. Conclusion

This paper described the Prolog-based simulator for Delta
command execution and the interpreter which converts a SEQUEL
guery into a Delta command scguence. Since Delta uses an
approach of storing relations by attribute clusters, we will
prepare a simulator which makes use of such an internal schema
and examine it, Also we will add VIEW management, consistency
control and other secondary functions to the SEQUEL interpreter.

References;

[1] D.D.Chamberlin, et al., "SEQUEL 2:A Unified Approach to Data
Definition, Manipulatien, and Control™, IBM J. RES. DEVELOP.,

November, 1976.

[2] Yokota, Kunifuji, et al., "Interface between Logic
Programming Language and Relational Database Management System
(2) -- Implementation --", 26th Mational conference, Information

Processing Society of Japan, 5C-10, 1983,

