-)
Prolog Machine

Based on the Data Flow Mechanism

kv
Morivoeshi Tto.Rikio Onai.

FKanae Masuda., 'Fl:aj ime Shimizu

Prolog Machine Based on the Data Flow Mechanism

H. Ite, R. Cnai, K., Masuda, H. Simizu

Institute for New Ceneration Computer Technolegy

1. INTRODUCTION

Proleg (Programming in Logic) is a simple but powerfull
language ocontaining a basie inference capability. The
execution process of Prolog is closely related to 2 data
flow concept. A model based on the data flow conecept can
naturally realize the parallel processing and has the
eapability of funetioning as the base of a highly parallel
processing system([1]. The authers are investigating a
parallel inference machine which executes Prolog based on
the data flow concept. This paper describes the basic idea
of the parallel processing mechanism and the conceptual

architecture of the machine.

2, PARALLEL UNIFICATION

An unification, or a pattern-matching, is a basic
function embedded i1in Prolog. Civen a goal sentense, the
unification function seclves the goal sentence by matching,
in terms of pattern, the goal sentence with a set of
clauses, The parallelism concerning this unification can be

divided inte three types as follows:

Page 2

{1)OR parallelism

(2)AND parallelism

(3)Parallelism among arguments

The first parallelism, the OR parallelism, can be
accomplished din a straightforward manner., This parallelism
is achisved, given a goal literal in the geal sentence, by
unifying in parallel the clause whose head litaral has the
same predicate as the goal literal (A goroup of such eclauses
is called a definition, and these clauses are combined by OR
connectives each other.) with the goal literal with reszpect

to all the clauses included in the definition [2].

In contrast, the second paralleism, the AND
parallelism, involves consistency checking. In other words,
when goal literals in a goal sentence have shared wariables
in there arguments, the complex communications are generally
required among AND unfication proceszes running in parallel,
in which each AND unification process tries to solve a goal
literal, so that consistency of the binding =status ecan be

maintained for these shared variables.

The third parallelism, the parallelism among arguments,
means, when a goal literal eontains multiple arguments,
unfications are performed in parallel on individual
arguments, Although it can be considered a variant of the
AND parallelism due to the necessity of consiatency

checking, this checking can be pealized by a aynchronization

Page 3

operation which simply checks whether unfications for all

arguments has succassfully completed or not,

3. UNIFICATION BY THE DATA FLOW APPROACH

As described above, the introduetion of AND parallelism
may results in an extremely complicated operation,
Therefore our machine will inplement
OR-parallel/AND-pipeline processing using a stream
concept[3]. Also it acheives efficient parallel processing
among arguments by decomposing an unification procass into
individual unification operators and representing it by a

data flow graph.

A stream plays a role of a "pipe"™ for the flow of
binding information (i.e. instances) for wvariables and
provides a means of asynchronous communications between the

binding information producer and consumer.

For example, assume that the following goal =sentence
and a set of eclauses are given (The syntax below conforms to

DEC-10 Prolog{l]):

?-D{er}|Q(I).P{T]-

p{a,b}.
ple,d).
gl{al.
qlel.
rib).
r{d)}.

where ¥ and Y denote variables and the literals im thae goal

sentence are processed from left to right. The binding

Page U

information for ¥ and ¥ are passed along the streanms
represented by the arrows in the above figure, and
processing between p(X,Y) and g(Y) and between PIX,Y) and
r(Y) are performed on a pipeline basis. Since qlX) and r(Y)
have no shared variable each other, they can be exeouted in
parallel. If a clause such as p(Z,Z) is Eiven in the
definition of rpredicate P, however, a dynpamie sequence
control mechanism may be required between the processes gq{X)
and r(Y), because X and Y are to be bound to the same

variable 2,

Cur machine basically uses the breadth-first approach
which simultaniously initiates executable unification
processes. To prevent a deadloek due to an exploszive
resource exhaustion, the machine adopts priority contraol of
procésses by assigning a priority teo each process, while it
provides, if required, a swapping/terminatien function for
designated processes, As for priority econtrel, a search
strategy based on a pseudo depth-first approach can be
achieved by, for example, representing process identififers
in a search tree with numbers in the depth (vertical)
direction and those in the widtk {horizontal) direction, and

employing the width-direction numbers as priorities.

These capabilities can be accomplished by appending a
process identifier field to a token which carries an operand
data, and by providing a hardware function to control the

process status by identifing this field,

Page &

b, MACHINE ARCHITECTURE

Figure 1 shows a conceptual configuration diagram of
our machine, The machine consists of Processing Element
Hodules (PEM=) which execute unification processes
represented by tLthe data flew graphs, Structure Memory
Modules (SMMs) which store and manipulate structured data,
and three types of network; Inter-SM, PE-3M, and Inter-SM

Netwaork.

(1) Processaing Element Module (PEM)

The PEM executes unification processes represented by
data flow graphs. A PEM consists of an Instruction Contrel
Module (ICM) which controls the instrucution execution, and
an Execution Module (EXM) which interpretes and exeoutes
instructions. The ICM is initiated by an arrival of any
token on its input port. Fach tocken has a process
identifier field, a destination Ffield which contains a
desination dinstruction address, and a value field which
contains operand data of the instruction. The ICM tests the
executability of the imstruction, 4i.e. tests if all the
operands of destination instruction has arrived or not, Ir
the dinstruction is executable, then the ICM construets an
executable instruction packet which contains an operation
code, operands, and next destination fields which specify
the destination instruction addresses of the results, and
sends it to the EXM. Otherwise, the ICM stores the operand

in itas operand memory, until the instruction becomas

Page &

executable. The EXM receives the executable instruction
packet, executes the instruetion, generates new tokens with
the result and the destination field=s in the executable
instruetion, and sends back them to the ICM specified by the
destinations. The ICM and EXM form a ciroular-pipeline
structure. The EXM is further constructed by multiple
Frocessing Units (PU) to balance the EXM with the ICM in the
average processing speed. The i) executes built-in
predicates, centrol instructions, etc. , which doez access no

structured data, and generate the results as tokens,
ININININININI NI NI NININININI NN NI NN

4 /
4 I
4 i/
< !/
4 FA
< A
< Frr
< f 5 f o+
4 e S
i e ———— 1S
| Inter-PE Network o+
e e T A
Fi fF+ S+ F Fow S
e e P S S T— ==+t) S+
i PEH i ! FPEM i/ H PEM Wosd s
e ———— e e — temmmmmmant f S 4
/ A A
Hmmmmm——— - - m————— e ———
I PE-3M Network o et
e ———— e —————— e it e S T
! o+ 7 HF+ 7
e s T T L T —— + S bmmm—— - f S
! SMM v i 3MM [y I sMM Yy 2 7
Fm - e ——— + tmmm—mme——t S S
i f o/
+= - s —— e ——
| Inter-SM Network i

R i T ———y
PEM: Processing Element Module
SMM: Structure Memory Module

Figure 1 An abstract machine configuration

Page T

If a PU has vreceived & structured data manipulation
instruetion, it sends the instruction to specified SMM

{described below) and leave the instruction execution to it.,

Unification processes are dynamically allocated to PEMs
so that load balance will be maintained among PEMs., (A PEM
in a relatively idle state will load a new process from the
process queus and execute it.) In addition, a PEM is
provided with a procesa priority control function as well as
a swapping and deletion fuction for the tokens belonging to

particular processes.

{2) Structure Memory Module {ZMM)

An SMM has funetions te store, control, and manipulate
stretured data such as lists, vectors, and streams, and is
shared among all PEMs. In order to avoid temporary load
concentration or access contention on a particular SMM, a
logical structured data may be distibuted and stored in
multiple SMMs, In addition, for effective garvage

collection eontrol, a reference count method is used.

{3) Wetwerk Structure

There are three types of network, each based on an

asynchronous communication method.

a. Inter-PE Network

Page 8

This network is wused for communications between
processes assigned to different FEMs. Such unifiecation
processes are dynamically allocated to PEMs. When they are
allocated, a strategy capable of making use of the loecality
of inter-PE communications is adepted. That is, a newly
created process may be 2llocated te a PEM which is in a
short distance frem its parent's PEM. The topology of
Inter-PE network, therefore, is a two-dimentional mesh

configuration.
b. PE=3M Network

This network is used when a process in a FEM agcesses
structured data. Generally it seems difficult to maintain a
load balance among SMMs while storing structured data in
SMMs to loealize communications between SMMs and PEMs. The
PE-3M Network, therefore, is an equi-distance network
consisting of four-input=four-output swWwitehing nodes in a

multiple-stage configuration.
¢. Inter-SM Network

This network is used when inter-SM conmunications are
required to traverse a data structure as in the case of
testing if the structure is a ground term or not (i.e,
inclusion check of variablas). Generally it is possible to
introduce a strategy capable of making use of the locality
of dinter-5M communications when a data structure is mapped
over multiple SMMs. Therefore, like the Inter-PE Network,

this network also employs a two-dimensional mesh

Page 9

configuration.

4. COMCLUSION

This paper has described the abstract configuration of
a Prolog machine based on the data flow model. We will
carry cut more detailed investipations on its architecture
using such methods as simulation. We would like to thank
Mr. K. Murakami, Chief of the First Research Laborataory,

for his waluable daily guidance.

{refernsces?

[1] Arvind, CGostelow,K.P. and Plouffe,W.E.," An
Asynchronous Programming Language and Computing Machine®, TR
114a, Department of Information and Seience, University of

California, Irvinme, Dec. 1978.

{2] Clark,K.L. and Gregory,S., "A Relational Language
for Parallel Programming®, Res. Rep. of Imperial College

of Science and Technology, DOC 81/16, July, 1981,

[3] Conery,J.S. and Kibler,D.,"Parallel Interpretation
of Logic Programming",Proc. of Canf, on Funectional
Programming Language and Computer Architecture, ACM, Oect,

1981,

{4] Pereira,L., Pereira,F. and Warren,D.,"User's Guide
to DECsystem-10 Prolog®, Department of Artifieial

Intelligence, University of Edinburgh, Sep. 1978.

